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We discuss several concepts of continuity, weaker than lower semicontinuity, but
still· implying the existence of a continuous selection for a closed convex valued
multifunction from a paracompact Hausdorff topological space into a Banach
space. In this way, an extension of Michael's celebrated selection theorem is given.
The behavior of e-envelop approximations, as well as the localization of continuous
selections, is also discussed. © 1992 Academic Press. Inc.

1. INTRODUCTION

Let (Y, II ·11) be a normed linear space. Denote by B the closed unit ball
and by B O the open unit ball in Y. Let ,o/I( Y) denote the set of all subsets
of Yand let %( Y) =,o/I( Y)\ {0}. For y E Y, C, DE,o/I( Y) we write

y + C = {y + v Iv E C}, C + D = {v + Y Iv E C, Y ED},

rC={rvlvEC} for rEIR..

The distance from y to C is defined by d(y, C)=inf{lly-vlllvEC}, the
Hausdorff excess of Dover C by e(D, C) = sup{d(y, C)lyED}, and the
Hausdorff distance between the sets C and D by D(C, D)=
max{e(C, D), e(D, C)} (see [4J). It can be shown that

D( C, D) = sup Id(y, C) - d(y, D)I.
yE Y

Moreover if C 1 ~ C~ Cz and D 1~D~D2 then

d(y, C) - d(y, D) ~ d(y, Cd - d(y, D z)
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and

Let X be a topological space. By a set valued mapping F of X into Y we
mean a mapping F: X --+ 8P( Y). By I' we denote the mapping defined by
F(x) = F(x ). Another set valued mapping G: X --+ &( Y) is said to be a sub
mapping of F, and we write G s; F, if G(x) s; F(x) for every x E X. By F n G
we denote the set valued mapping defined by F n G(x) = F(x) n G(x).
A function I: X --+ Y such that I(x) E F(x) (f(x) E F(x) +eBO) for every
x E X is called a selection (e-approximate selection) of F. The set of all
continuous selections for F (respectively: all continuous e-approximate
selections) we denote by CF (respectively: C~). We use the same symbol for
a set K of functions from X into Yand the set valued mapping from X into
Y defined by K(x) = {j(x) liE K}.

We introduce the definitions of certain set valued mappings derived
from F (see also [1-3]). For XEX let Ol/(x) denote the family of all
neighborhoods of x. For a set DE &( Y) we define FD: X -4 8P( Y) by

n (F(x')-D)
UE"li(x) X'EU

and we write Fe instead of FeB" for e > O. We define Fo: X --+ &( Y) by setting

Fo(x) = n Fe(x).
e>O

Fo(x) is a Kuratowski limes inferior of a net (F(x) Ix' --+ x) and can be
characterized as

Fo(x) = {yEF(x)ld(y, F(x'))-40 as x' --+x}.

It is easy to verify that Fo= FoS; F. Note that F{o} S; Fon F, but in general
the equality does not hold.

Recall that F: X --+ JV( Y) is lower semicontinuous (l.s.c.) if F - (W) =
{x IF(x) n W 1= 0} is an open subset of X for every open subset W of Y
[13]; equivalently: if Fo=F [2, Proposition 1.1; 1, Lemma 1.1], (see also
Proposition 2.10 below). Following Deutsch and Kenderov [8] (see also
[5]), we call F almost lower semicontinuous (almost l.s.c.) if for every x E X,
e> 0, it holds that Fe ( x) 1= 0.

Now assume that F: X --+ JV( Y) has closed convex values, X is a para
compact Hausdorff topological space, and Y is a Banach space. The
celebrated Michael theorem [13] asserts that if F is lower semicontinuous
then F admits a continuous selection throughout each point of its graph,
i.e., CF(x)=F(x) for all xEX. Brown in [2] noted that CF=CFo ' thus if
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CF #- 0 then Fo(x) #- 0 for all x EX. Deutsch and Kenderov [8] proved
that C~ #- 0 for every B > 0 if and only if F is almost l.s.c.

Moreover if F has convex values then Fe and Fo also have convex values
(possi.ble empty). As we remarked Fo= Fo. Thus, if Fo(x) #- 0 for all x EX
and (Fo)o = Fo, i.e., Fo is l.s.c., then CF#- 0, by virtue of Michael's
theorem. In a recent paper [3] Brown defined a transfinite sequence
(F(~) Iex an ordinal) by letting

F(O)=F, F(!3)(x) = n F(~)(x)

~<!3

whenever f3 is a limit ordinal. He observed that there must occur the first
ordinal y such that F(y+l)=F(Y). Since CF=CF1,j and F(~) has closed
convex values for every ordinal ex, Brown concluded that CF # 0 if and
only if F(Y)(x) # 0 for all x EX. Brown proved also that in the case Y = IRn

it holds that CF# 0 if and only if F(n)(x) # 0 for all x EX. But it may
happen that F(n)(x)#0 for all xEXand F(n)#F(n-l) [3, Theorems 4.3,
1.3].

We are concerned with the question: When for F: X ...... &'( Y) can one
assert that Fo(x) # 0 for all x EX and (Fo)o = Fo? The problem may be
transferred naturally to every F(~).

In Sections 2 and 3 we discuss several criteria for F to yield a positive
answer. Our consideration covers the "separation type" concepts of lower
semicontinuity which extend the ideas from [6, 15], as well as the con
vergence approach involving the mappings Fe due to Beer [1] and the con
ditions introduced in [7,9]. We present also the results on approximation
of the submapping Fo. In Section 4 we use these results in approximating
the set of continuous selections for F. The relevance of the mappings Fe
to the study of continuous selections for F is due to the simply verifiable
relations

for 0 < B < band n C~= CF
e>O

(see Proposition 4.1 below). Section 5 is devoted to the study of localiza
tion of continuous selections. We discuss in this section the heredity of
the properties introduced for intersections of a set valued mapping with
ball valued mappings. Finally, Section 6 contains some comment on the
selection extension property.

If it is not assumed otherwise, throughout the paper X is a topological
space and Y is a normed linear space.
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2. THE CONCEPTS OF LOWER SEMICONTINUITY

In this section we introduce the lower semicontinuity conditions for F.
We elucidate interrelations between them and their relation to the lower
semicontinuity of F.

First we list some elementary properties of the derived mappings FD' Fe>
for B~ 0, defined in the Introduction. Recall that F: X -+.9( Y) is said to
have open lower sections if F - (W) is an open subset of X for every subset
Wof Y (see, e.g., [18]). Clearly F: X -+ %( Y) has open lower sections if
for every x E X, F has open lower sections at x, i.e., F(x) n W =t- 0 implies°E F w(x), for every subset Wof Y.

2.1. PROPOSITION. Let F, G: X -+.9( Y) be set valued mappings and let
XEX, ZE Y, D, E';;;. Y. Then:

(1) zEFD(x) if and only ifOEFz+D(x),

(2) F{z)(x)nD=t-0 implies zEFD(x),

(3) FD(x)';;;.F(x)-D,

(4) F D has open lower sections,

(5) (FD)E(X)=FD(x)-E';;;.FD+E(x)for all XEX,

(6) D ';;;. E implies FD ';;;. FE'

(7) ifD+A=EforsomeA';;;.Ythen (FD)E';;;.(FE)D'

(8) F';;;.G implies FD';;;.GD.

Proof Parts (1), (2), (3), (6), and (8) are immediate consequences of
the definitions.

(4) First observe that F;({z})= {xEXlzeFD(x)} is an open subset
of X for every Z E Y. Indeed, if Xo E F; ( {z}) then there exists U E OlI(xo)
such that F(x') n (z + D) =t- 0 for all x' E U. Then for every x E U we have
UEOlI(x) and F(x')n(z+D)=t-0 for all x'eU, hence U';;;.F;({z}).
Consequently, F;(W)=UZEWF;({Z}) is an open subset of X for
arbitrary W';;;. Y.

(5) From (3) applied to F D it follows that (FD)E(X)';;;.FD(x)-E. For
the reverse inclusion note that if z E F D(X) - E, i.e., F D(X) n (z +E) =t- 0,
then since FD has open lower sections there exists U E OlI(x) such that
F D(x')n(z+E)=t-0 for all X'EU, i.e., zE(FD)E(X). To complete (5)
observe that Z E F D(X) - E if and only if WE F D(X) for some WE Z + E.
Clearly w+D';;;.z+E+D, and thus we conclude that zEFD+E(X).

(7) If E = D + A then by (5)

(FD)E(X) = F D(X) - A - D = (FD)A (x) - D ';;;. FD+A(X) - D = (FE)D(X),

hence (7) holds. Q.E.D.
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2.2. PROPOSITION. Let F: X --+ &'( Y) be a set valued mapping and
0< b ~e. Then

for all x E X. Moreover Fo= Fo and

for all XE X.

Proof The first statement is a direct consequence of Proposition 2.1(5),
(7). That (FO)E(X) ~ Fo(x) - eRo follows by Proposition 2.1(3) applied to
Fo. Since

Fo(x) - eRO ~ Fb(x) - eRO ~ FE(x) - bRo ~ FHb(X)

for all 0 < b ~ e, it follows that Fo(x) = Fo(x) and that Fo(x) - eRO ~ FAx ).
But by Proposition 2.1(5), (6) we have

Fe(x) = (Fe){o}(x) ~ n (Fe)b(X) = (Fe)o(x) ~ FAx).
b>O

Q.E.D.

2.3. PROPOSITION. If F: X --+ &'( Y) has convex values and D is a convex
subset of Y then FD and Fo have convex values.

We say that F:X--+%(Y) is weak lower semicontinuous (weak l.s.c.) at
x if

for every e> 0 and V E OlI(x) there exists x' E V such that F(x') ~ Fe(x).

This concept, following the concept of weak Hausdorff lower semicon
tinuity due to De Blasi and Myjak [6], was introduced by the authors
[15], and under the more fortunate name quasi-lower semicontinuity by
Gutev [11].

We say that F: X --+ %( Y) is convex lower semicontinuous (convex l.s.c.)
at x if

OEFD(x) implies FE(x)nD#0, for all e>O and all closed convex
subsets D of Y.

Let K?: 1. We say that F: X --+ %( Y) is K-ball Lipschitz lower semi
continuous (K-ball-Lipschitz l.s.c.) at x E X, if

FE(x) # 0 whenever e > 0, and

oE Fy + rB(X) implies Fe(x) n (y + KrR) # 0,/or all y E Y and all r?: 0,
e>O.
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We say that F: X --+ %( Y) is weak I.s.c., (convex I.s.c., K-ball-Lipschitz l.s.c.)
if F is weak l.s.c. (convex l.s.c., K-ball-Lipschitz l.s.c.) at every x E X. We say
simply that F is ball-Lipschitz I.s.c. if F is K-ball-Lipschitz l.s.c. for some
K'91.

We say that F: X --+ %( Y) is ball-uniformly lower semicontinuous (ball
uniformly I.s.c.), if

F£(x) =I 0 whenever e > 0, and

for every e> 0 there exists a [) > 0 such that Fb(x) S; FI'(x) - eRO for all
J1. > 0, and for all x E X.

2.4. THEOREM. Let F: X --+ %( Y) be a set valued mapping. Consider the
following statements:

(1) F has open lower sections,

(2) F is I.s.c.,

(3) F is weak I.s.c.,

(4) F is convex I.s.c.,

(5) F is I-ball-Lipschitz l.s.c.,

(6) F is ball-Lipschitz I.s.c.,

(7) F is ball-uniformly I.s.c.,

(8) F is almost I.s.c.

Then (1) => (2) => (3) => (4) => (5) => (6) => (7) => (8).

Proof (1) => (2), (5) => (6), (7) => (8) are obvious.

(2)=>(3). Clearly F is l.s.c. if and only if F(x)n W=l0 implies
OEFw(x), for every XEX and every open set Ws; Y. Therefore if
(z E eRa) n F(x) =I 0, then 0 E Fz + £B"(x), i.e., z E F£(x) (Proposition 2.1 (1».
Thus F(x) - eRO s;; FAx).

(3)=>(4). For arbitrary subset D of Y, ifOEFD(x) then there exists
UEOl/(X) such that F(x')nD=l0 for all X'EU. By (3), for every e>O
there exists x£ E U such that 0 =I F(x£) n D S; F£(x) n D.

(4)=>(5). We need only observe that F£(x) =I 0 since OEFy(x).

(6)=>(7). Suppose that YEF£(x). Then OEFY+eB(X) and there
fore, by the assumption, F2-II'(x)n(y+KeB)=l0, or equivalently
YEFrll'(x)-KeB, for every /-l>0. Thus by Proposition 2.2, we get

Fe (x ) S; F2-11' (x) - KeB s;; F2-II'(x) - 2 -1/-lBo - KeBO s;; FI' (x) - KeB,

for every J1. > O.

640/68/3-4

Q.E.D.
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Clearly F: X ..... JV( Y) may be l.s.c. but may have not open lower sec
tions, e.g., F( x) = {x} for x E IR. Two examples of set valued mappings
F: IR ..... JV(IR) with compact convex values, one of which is weak l.s.c. but
not l.s.c., and the other is convex l.s.c. but not weak l.s.c. at every x E IR, are
given in [15, Examples 2, 4]. Note that in the case of I-dimensional space
Y the following coincidence holds.

2.5. PROPOSITION. Assume that the set valued mapping F: X ..... JV(IR) has
convex values. Then F is almost l.s.c. if and only if F is convex l.s.c.

Proof Assume that F is almost l.s.c. and let D be a closed convex sub
set of IR, e > 0, x E X. Clearly F,(x) is a nonempty interval, possibly infinite.
If F, (x) n D = 0 then for every U E !J/t (x) there exists x' E U such that
infD~sup(F(x/)-eBO)or supD~inf(F,(x/)-eBO).Hence F(x')nD=0.
Consequently 0 ¢ F(x). Q.E.D.

Thus the lower semicontinuity conditions (4)-(8) in Theorem 2.4 are
equivalent for a convex valued mapping F: X ..... JV(IR). The following
simple examples show that these concepts are distinct even for a convex
valued mapping F: IR ..... JV(1R 2

).

2.6. EXAMPLE. Let F(O)={(O,t)lt~O}, F(x)={(!xl-1xs, Ixls)ls~O}

for x # O. Note that F,(O) = eBo u {(O, e)} for every e~ O. For any closed
ball DeY with the property F,(O) n D = 0 there exists a closed halfspace
H containing D and such that the set F,(O) n H is empty or consists of a
single point (0, e). If it happens that 0 E FD(O), then 0 E FH(O), which
together with F,(O)nH£{(O,e)} implies that H=H~ for some a~O,

where H~= {(s, t)lt~a}. However, for a bounded subset D of such a
halfspace it must hold that 0 ¢ FD(O). Thus, F is I-ball-Lipschitz l.s.c. at O.
Finally, F is not convex l.s.c. at 0, since for 0 < e < a we have 0 E FH.(O) and
F£(O) n H~ = 0.

2.7. EXAMPLE. Let F(x)={(t,O)IO~t~1} for x irrational and
F(x)={(t,ttana)IO~t~l} for x rational, where aE(O,n]. Then
K = (sin(a/2» -I is the smallest number such that F is K-ball-Lipschitz l.s.c.

2.8. EXAMPLE. Let F(x) = {(t, 0) I0 ~ t ~ I} for x irrational and
F(x) = {(t, s) I0 ~ t ~ 1, t2 ~ S ~ I} for x rational. F is not K-ball-Lipschitz
l.s.c. but is ball-uniformly l.s.c.

It is worth noting that the weak lower semicontinuity is a property
which is possessed by almost l.s.c. metric projections onto finite dimen
sional subspaces in the space of continuous functions. Actually for such set
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valued mappings the stronger continuity conditions were proved, via
certain perturbation theorems, and then used in proving the existence of
continuous selections (see [9,17,2] and references therein). We cite below
only the relevant conclusion from Wu Li's paper [17].

2.9. PROPOSITION (17, Corollary 4.4, Lemma 3.5]. Let X be a Banach
space of continuous functions from a locally compact Hausdorff space into a
strictly convex Banach space which vanish at infinity. Let F be the metric
projection from X onto a finite dimensional subspace of X. Then for any
XEX and for any e>O there exists x'Ex+eBo such that F(x')£F(x) and
F is l.s.c. at x'. If F is almost l.s.c. then for any x E X and for any e > 0 there
exists x' EX + eBO such that F(x') £ Fo(x).

From the second assertion of Proposition 2.9 it follows that such a metric
projection F is almost l.s.c. if and only if it is weak !.s.c. In general, it may
happen that a set valued mapping has compact convex values in euclidean
space [R2, is almost l.s.c. and upper semicontinuous on the whole domain,
as well as l.s.c. on a dense subset of the domain, but has no continuous
selection (see [3, Theorem 4.2a; 19, Sect. 3; 1, Example 1]; see also [8]).
We postpone the discussion on continuous selections of the maps satisfying
our lower semicontinuity conditions to Section 4. In the propositions below
we list more characterizations of these concepts.

We assume that F: X --+ Jli( Y) and x E X.

2.10. PROPOSITION. The following statements are equivalent:

(1) F has open lower sections at x,

(2) F(x)nDi'0 implies F{Ol(x)nDi'0,/or every D£ Y,

(3) F(x) = F{Ol(x).

2.11. PROPOSITION. The following statements are equivalent:

(1) F is l.s.c. at x,

(2) F(x) n D i' 0 implies F,(x) n D i' 0, for every D £ Y, e > 0,

(3) F(x)-eBo=F,(x)for every e>O,

(4) F(x) = Fo(x).

2.12. PROPOSITION. The following statements are equivalent:

(1) F is weak l.s.c. at x,

(2) 0 E FD(x) implies F,(x) nD i' 0,forall e > oand all subsets DofY,

(3) OEFD(x) implies F,(x)nDi'0, for all e>O and all closed
subsets D of Y.
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2.13. PROPOSITION. If F has convex values then the following statements
are equivalent:

(1) F is convex l.s.c. at x,

(2) OEFD(x) implies F,(x)nD#0, for all 6>0 and all closed
halfspaces including the improper case D = Y.

2.14. PROPOSITION. Let K~ 1. The following statements are equivalent:

(1) F is K-ball-Lipschitz l.s.c. at x,

(2) 0 # F,(x) S FI'(x) - K6BO for all 6, J1 > O.

2.15. PROPOSITION. The following statements are equivalent:

(1) F is I-ball-Lipschitz l.s.c. at x,

(2) 0#F,(x)-(jBo=FJ (x)-6BO for all (j,6>0.

Moreover, if F has convex values then these statements are equivalent to:

(3) o #F,(x)-(jBo=FJ (X)-6BO for all (j, 6>0.

3. THE CONVERGENCE OF THE NET (F, I6 ':. 0)

We give a sufficient condition for Fo to be l.s.c., in terms of-locally
uniformly for arguments and for values-a ball lower semicontinuity type
condition for F. Namely, we say that F: X ~ JV( Y) is ball-locally-uniformly
l.s.c. if

every x E X has a neighborhood V such that for every y E Y and 6 > 0
there exists a (j > 0 with the property that for every x' E V there exists r ~ 0
such that

for all J1 > O.

Clearly if F is ball-uniformly l.s.c. then F is ball-locally-uniformly l.s.c. Since
Fy(x) s Fp(x) for all x E X, y ~ {3, the ball-uniformly lower semicontinuity
means that sup x D(Fy(x), Fp(x)) ~°as y, {3 ~ 0, i.e., the decreasing nets
(F,(x)16 ':. 0) are Cauchy nets in the generalized metric space (JV(Y), D),
uniformly for x E X, while the ball-Iocally-uniformly lower semicontinuity
means that these nets are locally Cauchy nets in (JV( Y), D), locally
uniformly for x E X. The proof of our next theorem invokes the construc
tion and involves an extension (probably known) of the classical result on
the Cauchy sequences of closed sets in complete metric spaces due to Hahn
[12]; see also [4, Theorem 11-3].
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3.1. THEOREM. Let Y be a Banach space. Assume that a set valued
mapping F: X -. JV( Y) is ball-locally-uniformly l.s.c. Then Fo(x) # 0 for all
x E X and Fo is l.s.c. Moreover, for every x E X, Y E Y, and e > 0 there exist
a neighborhood V of x and (j > 0 such that

d(y, Fb(x'))::::; d(y, Fo(x')) < d(y, Fb(x')) + e

for all x' E V.

Proof Observe that from ball-locally-uniformly l.s.c. it follows
immediately that Fe(x) # 0 whenever e > 0, for all x E X. First we will
show that Fo(x) # 0 for every x E X. To this end, for each x E X and for
every e > 0 we will define inductively a sequence (Yn) such that

(1) (Yn+2-n-leBO)nFJl(x)#0for all/1>O, n= 1, 2, ...,

(2) YnE Yn-l +2-n- leBo for n=2, 3, ....

Fix an arbitrary y E Y and choose (j > 0 and r ~ 0 such that

0# (y + rBO) n Fb(x) ~ FJl(x) - 2 -2eBo

for all /1>0. Let d=d(y,Fb(x))+2- 1e. Choose YIE(y+dBO)n
(y + rBO) n Fb(x). Clearly

for all /1 > O.

Assume that for n = 1, ..., k we have defined Yn satisfying (1) and (2). For
Yk choose (jk > 0 and rk ~ 0 such that

0# (Yk + rkBO) n Fbk(X) ~ FJl(x) - 2- k- 2eBo

for all /1>0. Since (Yk+2-k-leBO)nFbk(x)#0 we can choose
Yk+ 1 E (Yk + 2 -k-leBO) n (Yk + rkBO) n Fbk(X). Then

(Yk+l +2-k- 2eBO)nFJl (x)#0

for all /1 > O. Thus (l) and (2) are satisfied for n = k + 1. Note now
that from (1) and (2) it follows that (Yn) is a Cauchy sequence, hence
convergent to some Yo, and Yo E Yn + 2 -neBo for every n. Since

Yn E n (FJl(x) - 2- n- 1eBO) ~ n FJl+2~n-'e(X),
Jl>O Jl>O

it follows that

YoE0 (COo FI'+2_n_1e(X))-2-
n
eB

O
)

~n n FI'+(2-n~'+2-n)e(x)=Fo(x).
n Jl>O
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d(y, Fb(x))~d(y,Fo(x))~ Ily- YIII + IIYI- Yoll
< d(y, Fb(x)) + 2-Ie + 2-Ie.

Since Y E Y was arbitrarily chosen, from the first inequality it follows in
particular that the net (Fb(x)ID \. 0) is V-I-convergent to Fo(x), where
V-I stands for the lower Vietoris topology on %(Y) [10, Proposi
tion 2.1]. The same inequalities are valid for all x' from some
neighborhood U of x and the sequences (y~) defined in this way for x' and
y. Therefore for x' E U and y' E Y +2 -leBo we have

d(y, Fb(x')) ~ d(y, FO(x' )) ~ Ily - y~ II + Ily~ - y~11

< d(y, Fb(x')) + 2-Ie + 2-Ie.

Thus, in particular, for arbitrary v> 11 > 0, f3 ~ 15, and x' E U we have

whenever

FfJ(x') n (y + (v - 11) BO) #- 0.

From this it follows immediately that the net (FbID \. 0) is Y''ir-I-quasi
locally uniformly convergent to Fo at x for the quasi-uniformity Y''ir- I

on %( Y) associated with th~ norm uniformity on Y, in the sense of
[10, Sect. 7]. Since all Fb are l.s.c., it follows that Fo is l.s.c., by virtue of
[10, Theorem 7.3]. Q.E.D.

Theorem 3.1 extends the result due to Beer [1, Theorem 1], who
assumed locally uniform convergence of the F I /n to Fo in Hausdorff metric,
and showed that Fo is l.s.c. Note that by the same arguments as those in
Theorem 3.1 we have the following.

3.2. COROLLARY. If Y is a Banach space and F: X -. %( Y) is ball
uniformly l.s.c., then Fo(x) #- 0 for all x E X, Fo is l.s.c., and
supx D(Fy(x), Fo(x)) -.° as y -.0. If F is K-ball-Lipschitz l.s.c., then
supx D(Fy(x), Fo(x)) ~ Ky for all y ~ 0.

Indeed, the first assertion is clear, and for the second one it suffices to
recall that K-ball-Lipschitz lower semicontinuity of F means that
supx D(Fy(x), FfJ(x)) ~ K max{ y, f3} for y, f3 > 0.

Now we take advantage of the convexity of the values of F in
approximating the submapping Fo by F,. The following simple property is
fundamental for our considerations.
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3.3. PROPOSITION. If a set valued mapping F: X --+ %( Y) has convex
values then for all x E X the maps e --+ Fe (x) have convex graphs.

Proof Let XEX, O::::;<5::::;e, O::::;s::::;l, YoEFo(x), YeEFe(X), and
Y = (1 - s) Yo +SYe' There exists U E OlI(x) such that for all x' E U

and

Thus

Y = (1 - s) Yo + SYe E (1- s)(F(x') - <5BO) + s(F(x') - eBO)

=F(x' ) - (( 1- s) b + se) BO,

for all x' E U. Hence Y E F(l _s)o + se(x).

Observe that by Proposition 3.3 the
Y E Y, are convex. Clearly

Q.E.D.

functions e --+ d(y, Fc(x)), x E X,

D(F,(x), Fo(x)) = sup Id(y, Fe(x)) - d(y, Fo(x))I.
y

For O::::;b::::;e we have Fo(x)-(e-b)BO~Fe(x) and d(y,Fo(x))=
d(y, Fo(x) - (e - <5) BO) + (e - b), whenever y ¢ Fe(x). Thus for e~ b ~ 0 we
have

d(y, Fo(x))-d(y, Fe(x))~e-b,

whenever y¢Fe(x) and

whenever Fe(x) =I- Y. The next proposition summarizes the above observa
tions. We denote by 8e+ d(y, Fp(x)) the right-hand derivative of
e --+ d(y, Fe(x)) at 13.

3.4. PROPOSITION. Assume that a set valued mapping F: X --+ %( Y) has
convex values, is almost l.s.c. at x E X and F(x) =I- Y. Then for every y E Y the
function e --+ d(y, Fe(x)) is a finite convex nonincreasing function on
(0, + 00) and - 00 < 8t d(y, Fe(x))::::; -I whenever y ¢ Fe(x). Moreover

and

whenever 0::::; 13 :::; b, e.
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By Proposition 3.4, Corollary 3.2, and Lipschitz properties of convex
functions (see [16]), we have the following.

3.5. COROLLARY. Assume that Y is a Banach space and F: X -4 %( Y)
assumes convex values. If F is ball-uniformly I.s.c. then the mappings
B-4 D(F,(x), Fo(x)), x E X, are equi-continuous at ° and equi-Iocally
Lipschitz on (0, + (0). ifF is K-ball-Lipschitz l.s.c. for some K?:; 1 then these
mappings are equi-Lipschitz with constant K on [0, + (0).

Remark. Proposition 3.3 specified to the case of arbitrary set X
(equipped with the trivial topology {0, X} gives the following property of
the intersection of convex sets.

3.6. COROLLARY. Let {F(x) Ix E X} be a family of closed convex sets in
Y and assume that nXEX F(x) '" 0. Then the mapping B---+ nxEX F(x) - BBD

of [0, + (0) into Y has a convex graph and is locally Lipschitz on (0, + 00),
with respect to the Hausdorff distance in %( Y).

4. ApPROXIMAnON OF CONTINUOUS SELECTIONS

Invoking Michael's continuous selection theorem, in this section we give
simultaneously some extensions of this theorem and some information
about the approximation of the set of continuous selections for a set valued
map by the sets of e-approximation selections.

In the space C(X, Y) of continuous mappings of X into Y we consider
the generalized sup-norm Ilflloo = sUPx Ilf(x )11 (11fll 00 = + 00 whenever f is
an unbounded mapping). We denote by d(j, K) the distance from f to a
subset K of C(X, Y) and by ~(L, K) the Hausdorff distance between two
subsets L, K of C(X, Y).

We begin with a simple observation.

4.1. PROPOSITION. Assume that °~ c5 < e. If a set valued mapping
F: X -4 %( Y) has closed values then

CFoS; C~ s; CF, and C Fo = C F = C~= n C~.
,>0

Proof We have CFoS;C~, since Fb(x)s;F(x)-oBD for all XEX.

Also, C~s; CF" since for fE C~ and for all x E X it holds that
f(x) EfE_b(x) S; Fe(x). The second assertion follows directly from the first
one. Q.E.D.

In the subsequent lemmas and corollaries we assume that X is a
paracompact Hausdorff topological space, Y is a Banach space, and
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F: X -+ %( Y) is an almost I.s.c. set valued mapping with closed convex
values.

4.2. LEMMA. CF,(X) = F, (x) for all x E X, e > O. If Fo(x),£ 0 for all
XEX and Fo is l.s.c. then also CFO(x) = Fo(x) for all XEX.

Proof Obviously CF(x) ~ F,(x). For the reverse inclusion, recall that,
F, has open lower sections (Proposition 2.1 (4)). Therefore by the well-
known Michael construction F, admits a continuous selection (see [18,
Theorem 3.1]). Moreover, it is easy to see that a continuous selection can
be constructed through each point of the graph of F,. By Michael's
theorem, the same is true for Fo if Fo is I.s.c., since Fo has nonempty closed
convex values (Proposition 2.2, 2.3). Q.E.D.

4.3. LEMMA. d(j, CFJ=suPxd(f(x), CF,(x)) for every e~O and every
continuous mapping f

Proof The assertion follows trivially whenever CF = 0, so assume,
CF,'£0. Put h=supxd(f(x), CF,(x)). Clearly h~d(j, CFJ On the other
hand for every IX> 0 and for every x E X the set G(x) = CF,(X) (\
(f(x) + (h + IX) B O

) is nonempty. For every e > 0, since the sets
C FJX) = F,(x) are convex and FE has open lower sections, it follows that
the set valued mapping x -+ G(x) has convex values and open lower
sections, and therefore has a continuous selection, say g. For e = 0, the set
valued mapping x -+ CFo(x) has closed convex values and is I.s.c. Then the

set valued mapping x -+ G(x) has by Michael's theorem a continuous selec
tion, say also g. In both cases g E CF, and d(j, CFJ ~ Ilf - gil 00 ~ h + IX.

Consequently, d (j, CFJ = h. Q.E.D.

4.4. LEMMA. For every continuous mapping f: X -+ Y and for 15, e > 0 the
following equalities hold.

(1) d(f(x), C~(x))=d(f(x),FE(x)) for all XEX,

(2) d(j, C~) = supx d(f(x), F,(x)),

(3) D(C~(x), C~(x))=D(Fe(x), Fb(x)) for all XEX,

(4) ~(C~,C~)=suPxD(FAx),Fb(x)).

If Fo(x),£ 0 for all x E X and Fo is l.s.c., then the equalities (1)-(4) hold for
all 15, e ~o.

Proof (1) By Proposition 4.1 and Lemma 4.2 we have

d(f(x), C~(x))~ d(f(x), CF,(x)) = d(f(x), Fe(x)),
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for all x EX and for every 8> 0. On the other hand, for arbitrary c5 > e,
Proposition 3.4, Lemma 4.2, and Proposition 4.1 yield

d(f(x), F,(x)) ~ d(f(x), Fo(x)) + 18: d(f(x), F,(x))1 (c5 - 8)

=d(f(x), CF.(x)) + 10: d(f(x), F,(x))/ (c5 -c)

~ d(f(x), C~(x))+ 10: d(f(x), F,(x))1 (c5 - 8).

Since 18: d(f(x), Fe(x))1 < + 00 whenever e > 0, then taking c5 '" 8 we
conclude that

d(f(x), F,(x)) ~ d(f(x), C~(x)).

For e = 0, by Proposition 4.1 and Lemma 4.2 we have

d(f(x), C~(x))= d(f(x), CFo(x)) = d(f(x), Fo(x))

for all x EX.

(2) Obviously supx d(f(x), C~(x))~ d(f, C~). By Proposition 4.1
and Lemmas 4.3 and 4.2 we have

d(f, C~) ~ d(f, CFJ = sup d(f(x), CF,(X)) = sup d(f(x), F,(x)).
x x

(3) By(l)

D(C~(x), C~(x»=sup Id(y, C~(x))-d(y, C~(x))1
y

y

(4) Obviously supxD(C~(x), C~(x))~9&(C~, C~). On the other
hand

9&(C~, C~") = sup Id(f, C~) - d(f, C~)I
f

~sup sup Id(f(x), Fe(x))-d(f(x), Fo(x))1
f x

x x

(here supfmeans that supremum is taken over allfE C(X, Y)). Q.E.D.
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4.5. COROLLARY. If

1
. D(Fy(x), Fo(x))

sup 1m < +00,
x y '" 0 y

then E0(C}, CFJ = 0 for e > O.

Indeed, by Proposition 4.1, Lemma 4.4(4), and Proposition 3.4, we have

x

whenever 0 ~ b < e. Letting b /' e we obtain E0( C}, CFJ = O. Note that we
have already established in Proposition 4.1 that C~= CF= CFo'

Now we are ready to formulate the main results of this section.

4.6. THEOREM. Let X be a paracompact Hausdorff topological space, Y
be a Banach space. Assume that F: X ~ JV( Y) is a set valued mapping with
closed convex values such that F(x) # Y for some x E X, Fo(x) # 0 for all
x E X and Fo is l.s.c. Then CF# 0 and

for e?O.

Proof Since Fo has closed convex values, CFo # 0 by Michael's
theorem, and CF= CFo by Proposition 4.1. The inequalities follow directly
from Lemma 4.4(4) and Proposition 3.4. Q.E.D.

By Theorem 3.1, Theorem 4.6, Lemma 4.4, and Corollary 3.5, we have the
following corollary.

4.7. COROLLARY. Assume that F: X ~ JV( Y) is a set valued mapping
with closed convex values and F(x) # Y for some x E X. If F is ball-locally
uniformly l.s.c. then CF# 0 and for every continuous mapping f: X ~ Y and
every XEX it holds that d(f(x'), C}(x'))~d(f(x'),CF(x')) as e~O,

uniformly for all x' from some neighborhood U of x. Moreover, if F is ball
uniformly l.s.c. then e~ E0( C}, CF) ~ 0 as e~ 0 and the function
e~ E0( C}, CF) is locally Lipschitz on (0, + (0). If F is K-ball-Lipschitz l.s.c.
for some K? 1, then e~E0(C';o, CF)~Kefor e?O.
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5. LOCALIZATION OF CONTINUOUS SELECTIONS

In this section we discuss the lower semicontinuity concepts for the inter
section of a given set valued mapping with a ball valued multifunction. In
particular, we answer the question: In what cases is the intersection of a
ball-Lipschitz l.s.c. set valued mapping with a ball valued multifunction
ball-Lipschitz l.s.c.? As an effect one can obtain more detailed information
on localization of continuous selections for set valued mappings.

For a pair of mappings f: X --+ Y, d: X --+ [0, +- r:JJ), and L ~ 0, we
denote by BL the subordinated ball valued multifunction defined by
BL(x) = f(x) +- Ld(x)B. We begin with a simple general result.

5.1. PROPOSITION. Assume that f: X --+ Y and d: X --+ [0, +- (0) are
continuous mappings and F: X --+ JV( Y) is a set valued mapping with closed
convex values such that Fo(x) i= 0 for all x E X and Fo is l.s.c. If
Fo(x) n (f(x) +- d(x) B) i= 0 for all x E X, then for every L> 1 the set valued
mapping F n BL defined by the formula

F n BL(x) = F(x) n (f(x) +- Ld(x)B)

is such that (FnBL)o is l.s.c. and (FnBL)o=FonBL.

Proof Since f and d are continuous, BL is l.s.c. It is known that lower
semicontinuity of Fo and BL

, together with the nonemptiness of
Fo(x)nB 1(x) for all XEX, implies that FonBL is l.s.c. (see [13,
Lemma 7.1; 14, Proposition 2]). Therefore by Propositions 2.1(8) and 2.11,

(F n BL)o ';; Fon (BL)o = Fon BL= (Fon BL)o ';; (F n BL)o. Q.E.D.

Now we pass to ball-Lipschitz l.s.c. set valued mappings.

5.2. LEMMA. Assume that f: X --+ Y and d: X --+ [0, +- r:JJ) are continuous
mappings and K~ 1. If F: X --+ JV( Y) is K-ball-Lipschitz l.s.c. and
F(x) n B 1(x) i= 0 for all x E X, then F/l(x) n BK(x) i= 0 for all x E X and
f.l>o.

Proof By the continuity of f and d, every x E X has a neighborhood U
such that

for all x' E U. Since F(x') n B 1(x') i= 0 for all x' E X, then
OEFBI(x)+(3K)-I/lB(X). Hence, by the definition of K-ball-Lipschitz l.s.c.,
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or equivalently,

(F2-II'(x) - 3 -tIlB) n BK(x) # 0.

Since F2-11'(X) - 3 -lllB £; FI'(x) (Proposition 2.1), we get the assertion.
Q.E.D.

The next lemma is a refinement of Corollary 1 in [15].

5.3. LEMMA. Assume that E is a convex subset of a normed linear space
Y, y E Y and r ~ 0. If E n (y + rBO) # 0, then

(E + eBO) n (y + LrB+ eBO) c En (y + LrB) + N(L) eBO,

for every e>O, L> 1, where N(L) = 1+2(L+ 1)/(L-l).

Proof If r =°then the inclusion holds trivially, so we assume that
r> 0. Without loss of generality we may also assume that y = 0. Thus we
should prove that

whenever r> 0, e > 0, L> 1. Let

Then there exists an element vEE such that Ilv - zll < e. Clearly Ilvll ~
Ilzll +e<Lr+2e. If Ilvll ~Lr, then obviously zEEn(LrB)+N(L)eBO, so
the only nontrivial case is Ilvll > Lr. By the assumption, there exists an
element v'EE such that Ilv'll ~r<Lr. Choose 2E(0, 1) such that for
v)=2v'+(l-2)v it holds that Ilv)II=Lr. By the convexity of Ewe have
v), E En (LrB). By the triangle inequality,

Lr ~ 2r + (1- 2)(Lr + 2e).

Hence 2~2e((L-l)r+2e)-1. Consequently,

Ilv-v)11 =21Iv-v'll ~2(lIvll + Ilv'lI)
~ 2e( (L - 1)r + 2e) - 1 ((L + 1)r + 2e)

~ 2e(L + 1)!(L - 1).

Finally,

IIz-v;,1I ~ liz-vii + IIv-vAii <e+2e(L+ 1)!(L-l).

Thus z E En (LrB) + N(L) eBo. Q.E.D.
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5.4. THEOREM. Assume that f: X ~ Y and d: X ~ [0, + OCJ) are con
tinuous mappings and K~ 1. If F: X ~%( Y) is K-ball-Lipschitz l.s.c., has
convex values and F(x) n (f(x) + d(x)B) # 0 for all x E X, then for every
L> 1 the set valued mapping F n B LK defined by the formula
F n BLK(X) = F(x) n (f(x) + LKd(x)B) is K'-ball-Lipschitz l.s.c. for some
K' ~ (1 + 2(L+ 1)j(L-1))K.

Proof Let us take an arbitrary J1 > O. Since F(x) n B1(x) # 0 for all
x E X and LK> 1, then by Lemma 5.3

for all x E X. From this it follows easily that

FJl(x) n (BLK)Jl(X) s:: (F n BLK)N(LK)Jl(X).

But BLK is l.s,c., since f and d are continuous. Thus, by Proposition 2.11,
for all XE X

Hence, for all x E X we have

FJl(x) n (BLK(X) - J1BO) s:: (F n B LK)N(LK)Jl(X).

Taking into account that by Lemma 5.2

0# FJl(x) n B~(x) s:: F/l(x) n BLK(X),

we get (FnBLK )N(LK)Jl(x)1'0. Since J1 was arbitrary we conclude that
(F n BLK), (x) # 0 for all x E X and for every B > O. On the other hand, by
Proposition 2.1(8), it is easy to see that

(F n B LK), s:: F, n (BLK ),.

Therefore, since BLK is l.s.c. and F is K-ball-Lipschitz l.s.c" we have

0# (F n BLK),(X) s:: F,(x) n (BLK),(X) = FAx) n (BLK(X) - BBO)

s:: (FJl(x) - KBBO) n (BLK(X) - KBBO),

Again by Lemma 5.3,

(FJl(x) - KBBO) n (BLK(X) - KBBO) s:: (FJl(x) n BLK(X)) + N(L) KBBo.

But
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Therefore

for all x E X and for every e> O. Since J1 was chosen arbitrarily, this
ensures that FnBLK is K'-ball-Lipschitz l.s.c. for K'~N(L)K=

(1 + 2(L + 1)/(L -1 »K. Q.E.D.

Remark. If Y is a Banach space, then under the assumptions of the
above theorem the set valued mapping (F n BLK)O has nonempty values, is
l.s.c. and (F n BLK)o = Fon BLK

.

For the concepts of weak lower semicontinuity and convex lower semi
continuity the following sharper conclusion is true (see [15]).

5.5. PROPOSITION. Under the assumptions of Theorem 5.4, but with F
weak (respectively: convex) l.s.c., for every L> 1 the set valued mapping
F n B L defined by the formula F n BL(x) = F(x) n (f(x) + Ld(x) B) is weak
(respectively: convex) l.s.c.

6. REMARK ON SELECTION EXTENSION PROPERTY

Let X be a paracompact Hausdorff topological space, Y be a Banach
space, and F: X --+ %( Y) be a set valued mapping with closed convex
values. It was established by Michael [13] that F is l.s.c. if and only if for
every closed subset A of X, every continuous selection f: A --+ Y of FI A

extends to a continuous selection l: X --+ Y of F. The direct consequence of
this selection extension property is that F is l.s.c. if and only if F(x) = CF(X)
for all x E X It means that, in general, the selection extension property as
well as the last equality no longer holds for set valued mappings satisfying
continuity conditions considered in our paper. Clearly all these conditions
guarantee that Fo(x) = CF(X) for all x E X, since they imply the lower semi
continuity of Fo. Let us point out that they are also sufficient for the
following weaker extension property.

6.1. PROPOSITION. Let X be a normal topological space and Y be a
topological vector space. If a set valued mapping F: X --+ %( Y) has convex
values and admits a continuous selection, then for every open set W s; X,
every closed set D s; W, and any continuous selection f: W --+ Y of FI w there
exists a continuous selection l: X --+ Y of F such that 11 D = fl D'

Proof Since D and X\ Ware disjoint closed sets, there exist two open
sets U, V, such that

DcU, X\Wc V, On V=0.
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By the Urysohn lemma there exists a continuous mapping tX: X -4 [0, 1]
such that tX(x) = 1 for x E [j and tX(x) = 0 for x E V. Let g be any continuous
selection of F. The selection] may be defined by the formula

](x) = tX(x) f(x) + (1 - tX(x)) g(x).
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